阅读量:240 img
白炭黑导致硅橡胶结构化,主要是基于白炭黑与高分子量聚硅氧烷巨量的氢键作用,这个结论,早就有人得出了。而白炭黑对硅橡胶(包括涂料中涂料体系)的触变性贡献,主要是基于白炭黑与白炭黑之间的相互作用。
于是,问题得到了简化:
结构化:白炭黑------硅生胶之间的相互作用(巨量氢键),聚硅氧烷高分子链相互纠缠,这两个效应综合的结果;
触变性:白炭黑------白炭黑之间的作用,氢键,范德华力综合所致。
一、结构化细解
白炭黑表面有三种硅羟基,导致结构化(氢键)作用的,应该是那种孤立、高活性硅羟基。这里的巨量氢键,是纳米级粉体所致,如果是微米级别的硅微粉,数量太少,几乎无结构化作用。当白炭黑的这种硅羟基被某种方式封闭或者隔离之后,结构化随之减少,如果封闭或者隔离足够充分,结构化也就不会发生。这个过程,通常就是所谓的白炭黑处理,产品称为“疏水白炭黑”,尽管商业上也使用疏水白炭黑这个说法,但这个称谓是不一定是正确的,至少是不科学的。原因在于,疏水白炭黑(确实具有外在的疏水性),同样一种亲水白炭黑为原料,但不同的处理,尽管疏水度可以完全一样,当加入到硅橡胶后,不一定具有抗结构化效果。也就是说,不是说只要选用疏水白炭黑,肯定就可以得到抗结构化的产品。
结构化,可以通过封闭羟基、隔离或加入合适的助剂得到不同成都的控制。以化学反应完全封闭羟基,确实可以消除结构化现象。隔离,比如加入大量白油,也可以消除结构化。助剂,比如低分子的羟基硅油,可以延缓结构化(足够量的加入,也可以长期不结构化)。这些措施,根据产品要求选择一种或者几种的组合。
工业上,炼胶的时候,加入硅氮烷,就是一种有效的封闭硅羟基措施,要达到完全的封闭,需要大量的添加量,成本很高,后处理麻烦,而且对胶的力学性能可能有负面影响。加入大量白油,只适合某些产品。目前比较经济的是加入低分子量的羟基硅油(为什么是短链?一般是5链节,这个问题很有趣,自己可以试验试试),或者烷氧基硅烷的水解物、二苯基二羟基硅烷等。甚至,加入水,醇也具有一定的抗结构化作用。
有一个说法,就是结构化可能含有化学键,基于这样的现象:结构化后的胶,经过返练虽然可以继续使用,但性能和结构化前比有一定差距。结构化后,由于白炭黑与聚硅氧烷之间的巨量氢键、聚硅氧烷之间的高分子纠缠,返练需要极大的剪切力和一定的温度,局部巨大的摩擦力(局部高温)可能导致聚硅氧烷链节断裂、降解,性能有所变化就不奇怪了。结构化虽然在炼胶的时候就不可避免,但我们通常关注的的结构化,指的是在常温常压、很温和的条件下存放几个月内产生的现象。从生胶的结构看,哪个基团具有在常温常压温和条件下与白炭黑产生化学反应的可能呢?你可以说白炭黑含氯,有酸性,那只要加入极微量的胺,结构化就不应该产生,可到目前为止,没有任何人通过加入胺或者调整白炭黑为中性的办法获得抗结构化产品,因此结构化只能是巨量氢键的作用。
低分子聚硅氧烷(这里不是指羟基或者烷氧基封端的那种,而是只对白炭黑惰性的甲基或者乙烯基之类),观察不到结构化现象,或者程度很轻,很明显和高分子链的纠缠有关。
因此,结构化首先是白炭黑与生胶的作用,其次是生胶高分子纠缠强化了这种作用。